Abstract

Groundwater quality in the Datong basin is threatened by high fluoride contamination. Laboratory analysis is a standard method for estimating groundwater quality parameters, which is expensive and time-consuming. Therefore, this paper proposes a hybrid random forest linear model (HRFLM) as a novel approach for estimating groundwater fluoride contamination. Light gradient boosting (LightGBM), random forest (RF), and extreme gradient boosting (Xgboost) were also employed in comparison with HRFLM for predicting fluoride contamination in groundwater. 202 groundwater samples were collected to draw up the performance capability of several models in forecasting subsurface water fluoride contamination. The performance of the models was assessed utilizing the receiver operating characteristic (ROC) area under the curve (AUC) and the confusion matrix (CM). The CM results reveal that with nine predictor variables, the hybrid HRFLM achieved an accuracy of 95%, outperforming the Xgboost, LightGBM, and RF models, which attained 88%, 88%, and 85%, respectively. Likewise, the AUC results of the hybrid HRFLM show high performance with an AUC of 0.98 compared to Xgboost, LightGBM, and RF, which achieved an AUC of 0.95, 0.90, and 0.88, respectively. The study demonstrates that the HRFLM can be applied as an advanced approach for groundwater fluoride contamination prediction in the Datong basin and could be adopted in various areas facing a similar challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.