Abstract

An advanced oxy-fuel hybrid power system (AHPS) is proposed in this paper. Solar thermal energy is used in the AHPS to produce saturated steam as the working fluid, and natural gas is internally combusted with pure oxygen. It is in configuration close to the zero emission Graz cycle. The thermodynamic characteristics at design conditions of the AHPS are analyzed using the advanced process simulator Aspen Plus. The corresponding exergy loss analyses are also carried out to gain understanding of the loss distribution. The results are given in detail. The solar thermal hybrid H2O turbine power generation system (STHS) is evaluated in this study as the reference. The comparison results demonstrate that the proposed cycle has notable advantages in thermodynamic performances. For example, the net fuel-to-electricity efficiency of the AHPS is 95.90%, which is 21.61 percentage points higher than that of the STHS. The exergy efficiency (based on the exergy input of fuel and solar thermal energy without radiation) of the AHPS is 55.88%, which is 2.13 percentage points higher than that of the STHS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call