Abstract

PM2.5 concentration is an important indicator to measure air quality. Its value is affected by meteorological factors and air pollutants, so it has the characteristics of nonlinearity, irregularity, and uncertainty. To accurately predict PM2.5 concentration, this paper proposes a hybrid prediction system based on the Synchrosqueezing Wavelet Transform (SWT) method, Quantum Particle Swarm Optimization (QPSO) algorithm, and Long Short-Term Memory (LSTM) model. First, the original data are denoised by the SWT method and taken as the input of the prediction model. Then, the main parameters of the LSTM model are optimized by global search based on the QPSO algorithm, which solves the problems of slow convergence and local extremum of traditional parameter training algorithms. Finally, the PM2.5 daily concentration data of Chengdu, Shijiazhuang, Shenyang, and Wuhan are predicted by the proposed SWT-QPSO-LSTM model, and the prediction results are compared with those of single prediction models and hybrid prediction models. The experimental results show that the proposed model achieves higher prediction precision and lower prediction error than other models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.