Abstract

Support vector regression (SVR) is a widely used technique for reliability prediction. The key issue for high prediction accuracy is the selection of SVR parameters, which is essentially an optimization problem. As one of the most effective evolutionary optimization methods, particle swarm optimization (PSO) has been successfully applied to tune SVR parameters and is shown to perform well. However, the inherent drawbacks of PSO, including slow convergence and local optima, have hindered its further application in practical reliability prediction problems. To overcome these drawbacks, many improvement strategies are being developed on the mechanisms of PSO, whereas there is little research exploring a priori information about historical data to improve the PSO performance in the SVR parameter selection task. In this paper, a novel method controlling the inertial weight of PSO is proposed to accelerate its convergence and guide the evolution out of local optima, by utilizing the analytical selection (AS) method based on a priori knowledge about SVR parameters. Experimental results show that the proposed ASPSO method is almost as accurate as the traditional PSO and outperforms it in convergence speed and ability in tuning SVR parameters. Therefore, the proposed ASPSO-SVR shows promising results for practical reliability prediction tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.