Abstract

The emission of solar-induced chlorophyll fluorescence (F) is a pivotal process to infer vegetation health and functioning that can be monitored by remote sensing. However, most of the current remote sensing methods retrieve only F at top-of-canopy level, therefore making the link with physiological processes occurring at photosystem level not trivial. In this study, we develop a novel machine learning Fourier (phasor)-based algorithm to retrieve F both at canopy level and after considering the reabsorption (i.e. photosystem level), consistently with relevant biophysical variables, exploiting the canopy apparent reflectance spectra (Rapp). In particular, Rapp is divided in consecutive spectral windows, where the Discrete Fourier Transform (DFT) is computed. Then, the DFT results in each window are exploited to estimate the fluorescence spectra and biophysical parameters, together with their uncertainties, by means of a supervised machine learning algorithm coupled to a statistical-based retrieval pipeline. The algorithm has been trained through synthetic Rapp spectra, obtained from simulations based on a Radiative Transfer (RT) model. As a proof of concept, the theoretical approach is then applied to experimental data, acquired both from crops and forests, at close and high soil-sensor distance respectively, to evaluate the retrieval accuracy of biophysical and F parameters. In particular, for the first time Rapp is used to extract the temporal evolution of F at canopy and photosystem levels and its quantum efficiency together with different biophysical variables, during the growing season of two agricultural crops. Furthermore, tower-based solar-induced fluorescence measurements in a deciduous forest are exploited to evaluate the performance of our algorithm when the atmospheric reabsorption and scattering are not negligible. The reliability of the proposed method is evaluated through a comparison with F spectra extracted from the state of the art SpecFit retrieval algorithm. This work promises a substantial advance toward a new accurate retrieval method for fluorescence signals and biophysical parameters at canopy and photosystem levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.