Abstract

With the advancement of networks and multimedia, digital watermarking technology has received worldwide attention as an effective method of copyright protection. Improving the anti-geometric attack ability of digital watermarking algorithms using image feature-based algorithms have received extensive attention. This paper proposes a novel robust watermarking algorithm based on SURF-DCT perceptual hashing (Speeded Up Robust Features and Discrete Cosine Transform), namely blind watermarking. We design and implement a meaningful binary watermark embedding and extraction algorithm based on the SURF feature descriptor and discrete-cosine transform domain digital image watermarking algorithm. The algorithm firstly uses the affine transformation with a feature matrix and chaotic encryption technology to preprocess the watermark image, enhance the confidentiality of the watermark, and perform block and DCT coefficients extraction on the carrier image, and then uses the positive and negative quantization rules to modify the DCT coefficients. The embedding of the watermark is completed, and the blind extraction of the watermark realized. Correlation values are more than 90% in most of the attacks. It provides better results against different noise attacks and also better performance against rotation. Transparency and high computational efficiency, coupled with dual functions of copyright protection and content authentication, is the advantage of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.