Abstract
There may be different types of cancer that cause fatal effects in the human body. In general, cancer is nothing but the unnatural growth of blood cells in different parts of the body and is named accordingly. It may be skin cancer, breast cancer, uterus cancer, intestinal cancer, stomach cancer, etc. However, every type of cancer consists of unwanted blood cells which cause issues in the body starting from the minor to death. Cancer cells have the common features in them, and these common features we have used in our work for the processing. Cancer has a significant death rate; however, it is frequently curable with simple surgery if detected in its early stages. A quick and correct diagnosis may be extremely beneficial to both doctors and patients. In several medical domains, the latest deep-learning-based model's performance is comparable to or even exceeds that of human specialists. We have proposed a novel methodology based on a convolutional neural network that may be used for almost all types of cancer detection. We have collected different datasets of different types of common cancer from different sources and used 90% of the sample data for the training purpose, then we reduced it by 10%, and an 80% image set was used for the validation of the model. After that for testing purposes, we fed a sample dataset and obtain the results. The final output clearly shows that the proposed model outperforms the previous model when we compared our methodology with the existing work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.