Abstract

High-risk carcinogenic human papillomaviruses (HPVs), e.g. HPV16, express the E6 and E7 oncogenes from two mRNAs that are generated in a mutually exclusive manner by splicing. The HPV16 E7 mRNA, also known as the E6*I/E7 mRNA, is produced by splicing between splice sites SD226 and SA409, while E6 mRNAs retain the intron between these splice sites. We show that splicing between HPV16 splice sites SD226 and SA409 is controlled by a splicing enhancer consisting of a perfect repeat of an adenosine-rich, 11 nucleotide sequence: AAAAGCAAAGA. Two nucleotide substitutions in both 11 nucleotide sequences specifically inhibited production of the spliced E6*I/E7 mRNA. As a result, production of E7 protein was reduced and the ability of HPV16 to immortalize human primary keratinocytes was abolished. The splicing-enhancing effect was mediated by the cellular TRAP150/THRAP3 protein that also enhanced splicing of other high-risk HPV E6*I/E7 mRNAs, but had no effect on low-risk HPV mRNAs. In summary, we have identified a novel splicing enhancer in the E6 coding region that is specific for high-risk HPVs and that is critically linked to HPV16 carcinogenic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.