Abstract

The PIGO gene encodes the GPI-ethanolamine phosphate transferase 3, which is crucial for the final synthetic step of the glycosylphosphatidylinositol-anchor serving to attach various proteins to their cell surface. These proteins are intrinsic for normal neuronal and embryonic development. In the current research work, a clinical investigation was conducted on a patient from a consanguineous family suffering from epileptic encephalopathy, characterized by severe seizures, developmental delay, hypotonia, ataxia and hyperphosphatasia. Molecular analysis was performed using Whole Exome Sequencing (WES). The molecular investigation revealed a novel homozygous variant c.1132C > T in thePIGOgene, in which a highly conserved Leucine was changed to a Phenylalanine (p.L378F). To investigate the impact of the non-synonymous mutation, a 3D structural model of the PIGO protein was generated using the AlphaFold protein structure database as a resource for template-based tertiary structure modeling. A structural analysis by applying some bioinformatic tools on both variants 378L and 378F models predicted the pathogenicity of the non-synonymous mutation and its potential functional and structural effects on PIGO protein. We also discussed the phenotypic and genotypic variability associated with the PIGO deficiency. To our best knowledge, this is the first report of a patient diagnosed with infantile epileptic encephalopathy showing a high elevation of serum alkaline phosphatase level. Our findings, therefore, widen the genotype and phenotype spectrum of GPI-anchor deficiencies and broaden the cohort of patients withPIGOassociated epileptic encephalopathy with an elevated serum alkaline phosphatase level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call