Abstract
Abstract A novel workflow was developed to select the optimal field development plan (FDP) accounting for the associated uncertainties in a green onshore oil field with a limited number of wells and no production data. The FDP was then revisited in view of the performance of wells drilled during the execution phase and updated as needed based on the acquired data . Comprehensive uncertainty analysis was performed resulting in multiple subsurface realizations. A broad set of development scenarios and options were screened under uncertainty. The viable scenarios were then economically evaluated, resulting in an optimal FDP that is robust to uncertainty and the least risk prone from an economical point of view. The used workflow was specifically suitable to test many development concepts and explore various options including horizontal well orientation, well pattern concept, pattern acreage and spacing, length of the horizontal sections, and landing of the horizontal sections. Following an extensive techno-economic analysis of all possible combinations (900 in total), the most robust development concept was selected and analyzed considering the viable development strategies pertaining to plateau rate, drilling schedule, phasing, water injection timing and artificial lift timings. A phased development approach was adopted enabling acquiring necessary data to mitigate the remaining uncertainty and avoid costly consequences of significant over- or under-capacity. Data acquired in one development phase were assessed and used to update the following planned phases, if necessary. The study demonstrated that the field development could accommodate a delay in either water injection or artificial lift implementation. Although it was not recommended at this stage to delay either of them, it is noteworthy that the long lead time that may be incurred in the implementation of artificial lift or the risk of lower injectivity would not impact the field performance or ultimate recovery if contained to a few years during initial production. These results further reinforced the robustness of the proposed development plan. Large subsurface uncertainty combined with an extensive set of possible development scenarios and options required cutting-edge uncertainty analysis and screening workflows to select the optimal FDP. These unique workflows can be readily used in similar green fields to help arrive at the final FDP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.