Abstract

Ertugliflozin (ERTU) is a novel, potent, and highly selective sodium glucose cotransporter 2 inhibitor that has been recently approved for the treatment of type 2 diabetes mellitus. We describe a novel bioanalytical method using high-performance liquid chromatography (HPLC) coupled with fluorescence detection for quantitative determination of ERTU in rat plasma. Acetonitrile-based protein precipitation method was used for sample preparation, and chromatographic separation was performed on a Kinetex® C18 column with an isocratic mobile phase comprising acetonitrile and 10 mM potassium phosphate buffer (pH 6.0). The eluent was monitored by a fluorescence detector at an optimized excitation/emission wavelength pair of 277/320 nm. The method was validated to demonstrate the selectivity, linearity (ranging from 4 to 2000 ng/mL), precision, accuracy, recovery, matrix effect, and stability in line with the current FDA guidelines. The newly developed method was successfully applied to investigate the pharmacokinetic interactions of ERTU with mefenamic acid (MEF) and ketoconazole (KET). The findings of the present study revealed that the pharmacokinetics of ERTU may be altered by concurrent administration of MEF and KET in rats. To our knowledge, the present study is the first to develop a validated bioanalytical method for quantification of ERTU using HPLC coupled with fluorescence detection and to assess the drug interaction potential of ERTU with non-steroidal anti-inflammatory (MEF) and azole antifungal (KET) drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.