Abstract

This paper presents a novel cantilever-type MEMS variable capacitor with high tuning ratio. In previous works, the cantilever is used as a switch but in our design, it is applied as a variable capacitor. For increasing the maximum achievable capacitance of the cantilever, the suspended capacitive plate should be moved as parallel with fixed plate. The parallel movement can be obtained using the novel structure which utilized two additional lateral beams. Also to overcome the pull-in phenomenon in new structure, the different membrane thickness technique is used. The novelty of our design is adding the lateral beams to make parallel movement of the suspended plate to increase the variable capacitor of the cantilever. The new device is designed on a thick silicon substrate with a thin poly silicon membrane. The results show the tuning range of tunable capacitor with initial capacitance of 560.1 fF can be improved from 6:1 for conventional cantilever to 22.5:1 for the new cantilever. In other words the capacitance tuning range increased three times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.