Abstract

Osteosarcoma is a malignant tumor that produces neoplastic bone or osteoid osteoma. In human multicentric osteosarcoma (HMOS), a unique variant of human osteosarcoma (HOS), multiple bone lesions occur simultaneously or asynchronously before lung metastasis. HMOS is associated with an extremely poor prognosis, and effective treatment options are lacking. Using the proteins in our previously generated HMOS cell lines as antigens, we generated antibodies using a human antibody phage library. We obtained antibody clones recognizing 95 independent antigens and developed a fluorescence probe-based enzyme-linked immunosorbent assay (ELISA) technique capable of evaluating the reactivity of these antibodies by fluorescence intensity, allowing simple, rapid, and high-throughput selection of antibody clones. These results were highly correlated with those using flow cytometry. Subsequently, the HMOS cell lysate was incubated with the antibody, the antigen-antibody complex was recovered with magnetic beads, and the protein bands from electrophoresis were analyzed using liquid chromatography-mass spectrometry (LC/MS). CAVIN1/polymerase I transcript release factor was specifically detected in the HMOS cells. In conclusion, we found via a novel high-throughput screening method that CAVIN1/PTRF is an HMOS-specific cell membrane biomarker and an antigen capable of producing human antibodies. In the future, antibody-drug conjugate targeting of these specific proteins may be promising for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.