Abstract

A new sense-amplifier-based flip-flop is presented. The output latch of the proposed circuit can be considered as an hybrid solution between the standard NAND-based set/reset latch and the NC-/sup 2/MOS approach. The proposed flip-flop provides ratioless design, reduced short-circuit power dissipation, and glitch-free operation. The simulation results, obtained for a 0.25-/spl mu/m technology, show improvements in the clock-to-output delay and the power dissipation with respect to the recently proposed high-speed flip-flops. The new circuit has been successfully employed in a high-speed direct digital frequency synthesizer chip, highlighting the effectiveness of the proposed flip-flop in high-speed standard cell-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.