Abstract

AbstractVinyl‐substituted hydridopolycarbosilane (VHPCS) is widely studied for its low viscosity, abundance of active functional groups, rapid curing, and high ceramic yield. The curing reactions mainly involve the free radical polymerization of vinyl and hydrosilylation reactions, but these reactions typically require high temperatures such as 160–250°C. The curing behavior of VHPCS‐17 with a tert‐butyl peroxybenzoate/Nickel acetylacetonate (TBPB/NIAA) system is investigated using differential scanning calorimetry and in situ Fourier transform infrared. The properties of VHPCS‐17 with different initiator systems and VHPCS with different vinyl contents (under TBPB/NIAA system) are studied using thermogravimetric analysis and x‐ray diffraction. The results demonstrate that the TBPB/NIAA system can facilitate the free radical polymerization of vinyl; moreover, this system decreases the peak temperature of the curing reaction from 251 to 141°C and increases the ceramic yield from 80.49% to 89.88%. The ceramic yield of cured VHPCS increases gradually, reaching 89.88% when the vinyl content is 17%. The grain size of β‐SiC decreases continuously with the increase in vinyl content, while the high‐temperature oxidation‐resistant properties of SiC ceramics obtained from different VHPCSs are not negatively affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.