Abstract

Efforts have been made to intentionally activate multiple strengthening mechanisms in a single alloy because individual strengthening effects have not been sufficiently exhibited in previous alloys with multi-strengthening mechanisms. Here, we design a novel high-entropy alloy with multi-strengthening mechanisms through a stepwise design approach utilizing CALPHAD type thermodynamic calculation. The target strengthening mechanisms are introduced step by step, from solid solution strengthening, the addition of precipitation hardening and transformation-induced plasticity, based on the calculation. The finally designed Co21Cr11Fe49Mn4Ni4V2C1Mo3Si5 alloy simultaneously benefits from solid solution strengthening due to Mo and V addition, precipitation hardening from nanoscale precipitates, grain boundary strengthening by grain refinement, and transformation-induced plasticity by BCC deformation-induced martensite transformation. Individual strengthening effects is sufficiently exhibited in the designed alloy, which leads to an excellent combination of yield strength (732 MPa), ultimate tensile strength (1100 MPa), and ductility (47.5%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.