Abstract

A novel high-efficiency visible-light sensitive Ag2CO3 semiconductor photocatalyst was prepared by a simple ion-exchange method based on a strategy incorporating of p-block C element into a narrow bandgap Ag2O. This photocatalyst exhibits universal high-efficient degradation ability for typically several RhB, MO and MB dyes. Getting insight into degradation patterns of dyes over Ag2CO3 identifies they are self-oxidation behavior of semiconductor rather than the effect of photosensitization. The reaction mechanism investigated by a series of radical trapping experiments, not only ascertains the major photoreaction approaches of dyes on the surface of Ag2CO3, but also reveals the unique universality advantage that arises from selective using one of many activated species to decompose many kinds of dyes such as RhB, MO and MB. The theoretical calculation based on first-principles provides inherently essential evidences for high-efficient oxidation performance of Ag2CO3 photocatalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.