Abstract

BackgroundCampylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and the main source of infection is contaminated chicken meat. Although this important human pathogen is an obligate microaerophile, it must survive atmospheric oxygen conditions to allow transmission from contaminated chicken meat to humans. It is becoming increasingly evident that formation of biofilm plays a key role in the survival of this organism for extended periods on poultry products. We have recently demonstrated a novel inducible model for the study of adherent C. jejuni biofilm formation under aerobic conditions. By taking advantage of supercoiling mediated gene regulation, incubation of C. jejuni with subinhibitory concentrations of the Gyrase B inhibitor novobiocin was shown to promote the consistent formation of metabolically active adherent biofilm.ResultsIn this study, we implement this model in conjunction with the fluorescent markers: TAMRA (live cells) and SytoX (dead cells, eDNA) to develop a novel systematic high-content imaging approach and describe how it can be implemented to gain quantifiable information about the integrity and extracellular polymeric substance (EPS) composition of adherent C. jejuni biofilm in aerobic conditions. We show that this produces a model with a consistent, homogenous biofilm that can be induced and used to screen a range of inhibitors of biofilm adherence and matrix formation.ConclusionsThis model allows for the first time a high throughput analysis of C. jejuni biofilms which will be invaluable in enabling researchers to develop mechanisms to disrupt these biofilms and reduce the viability of these bacteria under aerobic conditions.

Highlights

  • Campylobacter jejuni is the leading cause of bacterial gastroenteritis and a significant health burden across the world, with over 550 million cases reported each year

  • It is becoming increasingly evident that formation of biofilm is a key aspect of C. jejuni virulence, in particular as a stress response mechanism to explain the conundrum of the survival of this highly fastidious organism within the food chain, from farm to fork [1]

  • Recent work has continued to implicate the role of the oxidative stress response regulon in modulation of biofilm formation when C. jejuni is exposed to a high oxygen environment [21, 22]

Read more

Summary

Introduction

Campylobacter jejuni is the leading cause of bacterial gastroenteritis and a significant health burden across the world, with over 550 million cases reported each year. It is becoming increasingly evident that formation of biofilm is a key aspect of C. jejuni virulence, in particular as a stress response mechanism to explain the conundrum of the survival of this highly fastidious organism within the food chain, from farm to fork [1]. Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and the main source of infection is contaminated chicken meat. This important human pathogen is an obligate microaerophile, it must survive atmospheric oxygen conditions to allow transmission from contaminated chicken meat to humans. We have recently demonstrated a novel inducible model for the study of adherent C. jejuni biofilm formation under aerobic conditions. By taking advantage of supercoiling mediated gene regulation, incubation of C. jejuni with subinhibitory concentrations of the Gyrase B inhibitor novobiocin was shown to promote the consistent formation of metabolically active adherent biofilm

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.