Abstract

AbstractOrganic electrode materials have attracted tremendous attention for potassium‐ion batteries (PIBs). Whereas, high‐performance anodes are scarcely reported. Herein, a novel hexaazatriphenylene potassium carboxylate (HAT‐COOK) is proposed as anode materials for PIBs. The rich CN/CO bonds guarantee the high theoretical capacity. It is also demonstrated HAT‐COOK is more compatible with the water‐soluble binders than the hydrophobic fluoride binders, forming homogenous electrode film, maintaining structural integrity, and achieving stable cycling and excellent rate performance. With the compatible binder, each HAT‐COOK molecule can involve 6‐electron transfer, yielding a high reversible discharge capacity of 288 mAh g−1 at 50 mA g−1, excellent rate performance (105 mAh g−1 at 5000 mA g−1), and good cycling stability (143 mAh g−1 after 500 cycles at 500 mA g−1). These results highlight the importance of the delicate molecular design of organic molecules as well as the optimization of binders to achieve high‐performance PIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.