Abstract

In this research study it is aimed to propose a novel heuristic method for optimizing the VAWT design. The method is the combination of continuous/discrete optimization algorithms with double multiple stream tube (DMST) theory. For this purpose a DMST code has been developed and is validated using available experimental data in literature. A novel continuous optimization algorithm is proposed which can be considered as the combination of three heuristic optimization algorithms namely elephant herding optimization, flower pollination algorithm and grey wolf optimizer. The continuous algorithm is combined with popular discrete ant colony optimization algorithm (ACO). The proposed method can be utilized for several engineering problems which are dealing with continuous and discrete variables. In this research study, chord and diameter of the turbine are selected as continuous decision variables and airfoil types and number of blades are selected as discrete decision variables. The average power coefficient between tip speed rations from 1.5 to 9.5 is considered as the objective function. The optimization results indicated that the optimized geometry can produce a maximum power coefficient, 44% higher than the maximum power coefficient of the original turbine. Also a CFD simulation of the optimized geometry is carried out. The CFD results indicated that the average vorticity magnitude around the optimized blade is larger than the original blade and this results greater momentum and power coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.