Abstract

A new heuristic filter, called Continuous Ant Colony Filter, is proposed for non-linear systems state estimation. The new filter formulates the states estimation problem as a stochastic dynamic optimization problem and utilizes a colony of ants to find and track the best estimation. The ants search the state space dynamically in a similar scheme to the optimization algorithm, known as Continuous Ant Colony System. The performance of the new filter is evaluated for a nonlinear benchmark and the results are compared with those of Extended Kalman Filter and Particle Filter, showing improvements in terms of estimation accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.