Abstract
The interphase cells of the hypotrich ciliate Paraurostyla weissei possess a complex fibrillar system surrounding basal bodies in the compound ciliary assemblages, cirri and membranelles. During replacement of the ciliature at cell division, transient filaments precede and accompany the development of ciliary primordia and participate in the formation of the fission furrow. Both fibrillar systems are recognized by monoclonal antibody FXXXIX 12G9. We studied regeneration of cellular fragments after transection employing the mAb 12G9 and found a new cytoskeletal structure involved in healing of the excisional wound. The healing filament is formed at the wound edge, distally and in connection with the bases of cirri closest to the wound. It is visible 5 min after transection. Concomitant with development of new ciliary primordia, the healing filament shrinks and finally disappears together with other transient fibers formed in this process. Ultrastructural analysis of immunolabeled regenerating cells revealed that structures recognized by mAb 12G9 contain fine filaments whose packing and arrangement depends on accompanying cytoplasmic elements and the developmental status of a fragment. Assembly of the healing fiber does not depend on microtubules and microfilaments since it develops in cellular fragments exposed to cold, nocodazole, and Cytochalasin D. On Western blots of whole cell and cytoskeletal extracts of P. weissei the 12G9 antibody identified one protein band whose molecular weight corresponds to 60 kDa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.