Abstract

Halolysins are extracellular proteases secreted by halophilic archaea for nutritional purposes. They bear great application potentials in various industries. Yet the diversity of halolysins remains underexplored. In this study, a halolysin from the extremely halophilic archaeon Haladaptatus sp. DYF46 (HlyHap) was identified to be a novel type of halolysin without C-terminal extension (CTE). Addition of the CTE of a halolysin from Halococcus salifodinae to HlyHap did not significantly affect its extracellular proteolytic activity. Mature HlyHap was generated from recombinant HlyHap precursor by high-affinity column refolding. HlyHap displayed optimal activity at 0.25-0.50 M NaCl, 45 °C and pH 8.5-9.0. Interestingly, HlyHap preferred a low salinity and was stable in a broad range of salinity, albeit from an extremely halophilic archaeon. Ca2+ and Mg2+ significantly promoted HlyHap activity. HlyHap activity was stable with organic solvents and detergents. The Km and Vmax values of HlyHap against azocasein were 0.018 mM and 7,179 U/mg, and those against succinyl-Ala-Ala-Pro-Phe-pNA were 0.32 mM and 3×106 μmol/min/μg, respectively. The unusual traits of HlyHap, a novel type of halolysin without CTE, may endow it with strong potential for various industrial uses, such as biocatalysis in fluctuating salinities and aqueous-organic solvent. KEY POINTS: • This is the first report of a novel type of halolysin without C-terminal extension • HlyHap was obtained by heterologous expression and high-affinity column refolding • HlyHap exhibited good salinity tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call