Abstract

To improve the braking force of the Linear Permanent Magnet Eddy Current Brakes (LPMECB) under a large Air Gap (AG) length, this paper presents a novel structure of the LPMECB, named H-type Linear Permanent Magnet Eddy Current Brake (H-type LPMECB). To begin with, the analytical model of the LPMECB is established by using the equivalent magnetic circuit method, and it is found that the AG reluctance is greater than that of the other parts of the LPMECB. Based on this, a novel H-type LPMECB is proposed in order to compensate the influence of the AG. The H-type LPMECB adds Iron Foils (IFs) in the AG. These IFs are rectangular sheets made of pure iron. Furthermore, the finite element model of the H-type LPMECB is established to optimize the geometry parameter of the IFs, then the braking performance of the H-type LPMECB is measured. The simulations show that the optimal geometry parameter of the IFs of the H-type LPMECB is 0.25 ∗ L, and the braking performance of the H-type LPMECB is superior to that of the LPMECB, around three times. Finally, experiments were conducted, which validated the simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.