Abstract

Hundreds of different human skeletal disorders have been characterized at molecular level and a growing number of resembling dysplasias with orthologous genetic defects are being reported in dogs. This study describes a novel genetic defect in the Brazilian Terrier breed causing a congenital skeletal dysplasia. Affected puppies presented severe skeletal deformities observable within the first month of life. Clinical characterization using radiographic and histological methods identified delayed ossification and spondyloepiphyseal dysplasia. Pedigree analysis suggested an autosomal recessive disorder, and we performed a genome-wide association study to map the disease locus using Illumina’s 22K SNP chip arrays in seven cases and eleven controls. A single association was observed near the centromeric end of chromosome 6 with a genome-wide significance after permutation (pgenome = 0.033). The affected dogs shared a 13-Mb homozygous region including over 200 genes. A targeted next-generation sequencing of the entire locus revealed a fully segregating missense mutation (c.866C>T) causing a pathogenic p.P289L change in a conserved functional domain of β-glucuronidase (GUSB). The mutation was confirmed in a population of 202 Brazilian terriers (p = 7,71×10−29). GUSB defects cause mucopolysaccharidosis VII (MPS VII) in several species and define the skeletal syndrome in Brazilian Terriers. Our results provide new information about the correlation of the GUSB genotype to phenotype and establish a novel canine model for MPS VII. Currently, MPS VII lacks an efficient treatment and this model could be utilized for the development and validation of therapeutic methods for better treatment of MPS VII patients. Finally, since almost one third of the Brazilian terrier population carries the mutation, breeders will benefit from a genetic test to eradicate the detrimental disease from the breed.

Highlights

  • Genetic disorders with significant involvement of the skeletal system form a group of clinically and genetically heterogeneous diseases arising through abnormalities in the development, growth or maintenance of skeletal structures

  • The main component of bone and other connective tissues is extracellular matrix (ECM), which mainly consists of collagen and proteoglycans

  • ECM has an essential role in skeletal development which is proven by numerous amounts of skeletal disorders arising through mutations in the genes encoding the structural proteins like aggrecan, perlecan or several types of collagens causing collagenopathies and osteogenesis imperfecta (OI) [1]

Read more

Summary

Introduction

Genetic disorders with significant involvement of the skeletal system form a group of clinically and genetically heterogeneous diseases arising through abnormalities in the development, growth or maintenance of skeletal structures. ECM has an essential role in skeletal development which is proven by numerous amounts of skeletal disorders arising through mutations in the genes encoding the structural proteins like aggrecan, perlecan or several types of collagens causing collagenopathies and osteogenesis imperfecta (OI) [1]. Skeletal deformities are a prominent feature in certain lysosomal storage diseases (LSD) called mucopolysaccharidoses (MPS), in which deficiencies of lysosomal enzymes involved in the degradation of glycosaminoglycan (GAG) chains of the proteoglycans cause an accumulation of GAGs in lysosomes of many different cell types, mainly in the connective tissue. Clinical characteristics differ between mucopolysaccharidoses and even within a particular MPS type, they share features such as dwarfism, undeveloped epiphyseal centers, dysostosis multiplex, facial dysmorphia, corneal clouding and organomegaly [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call