Abstract
Group recommendation has recently drawn a lot of attention to the recommender system community. Currently, several deep learning-based approaches are leveraged to learn preferences of groups for items and predict next items in which groups may be interested. Yet, their recommendation performance is still unsatisfactory due to sparse group–item interactions. To address this challenge, this study presents a novel model, called group recommendation model with two-stage deep learning (GRMTDL), which encompasses two sequential stages: 1) group representation learning (GRL) and 2) group preference learning (GPL). In GRL, we first construct an undirected tripartite graph over group–user–item interactions, and then employ it to accurately learn group semantic features through a spatial-based variational graph autoencoder network. While in GPL, we first introduce a dual PL-network that contains two structure-sharing subnetworks: 1) group PL-network employed for GPL and 2) user PL-network utilized for user preference learning. Then, we design a novel layered transfer learning (LTL) method to learn group preferences by alternately optimizing these two subnetworks. In particular, it can effectively absorb knowledge of user preferences into the process of GPL. Furthermore, extensive experiments on four real-world datasets demonstrate that the proposed GRMTDL model outperforms the state-of-the-art baselines for group recommendation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.