Abstract

A set of novel, grid-robust, higher order vector basis functions is proposed for the method-of-moments (MoM) solution of integral equations for three-dimensional (3-D) electromagnetic (EM) problems. These basis functions are defined over curvilinear triangular patches and represent the unknown electric current density within each patch using the Lagrange interpolation polynomials. The highlight of these basis functions is that the Lagrange interpolation points are chosen to be the same as the nodes of the well-developed Gaussian quadratures. As a result, the evaluation of the integrals in the MoM is greatly simplified. Additionally, the surface of an object to be analyzed can be easily meshed because the new basis functions do not require the side of a triangular patch to be entirely shared by another triangular patch, which is a very stringent requirement for traditional vector basis functions. The proposed basis functions are implemented with point matching for the MoM solution of the electric-field integral equation, the magnetic-field integral equation, and the combined-field integral equation. Numerical examples are presented to demonstrate the higher order convergence and the grid robustness for defective meshes using the new basis functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call