Abstract

State of health (SOH) plays a vital role in lithium-ion batteries (LIBs) safety, reliability and lifetime. Health indicators (HIs) are a powerful approach to predict battery SOH. The existing methods for battery SOH prediction according to HIs only consider the temporal features of HIs. The spatial features of interdependence between HIs enrich predicational information especially for the limited data. This paper proposes a novel framework CL-GraphSAGE to predict battery SOH based on graph neural network (GNN), which takes into both temporal and spatial features of HIs. Firstly, the Pearson's correlation coefficients between HIs and SOH are obtained to extract highly correlated HIs to build a graph. Subsequently, the temporal features are extracted by convolutional neural network (CNN) and long short-term memory neural network (LSTM). Finally, the spatial features are obtained by the graph sample aggregate (GraphSAGE) to propagate messages on a pre-defined graph structure, which uncovers the deep information among HIs. The effectiveness of the proposed approach in predicting battery SOH is verified by MIT, NASA datasets and the experimental datasets, and compared with CNN, LSTM and graph convolutional network and graph attention network. The results show that the root mean square error of the proposed approach CL-GraphSAGE can achieve 0.2 %, and the different datasets verify its feasibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.