Abstract

Mainly when applied in the underwater environment, sonar simulation requires great computational effort due to the complexity of acoustic physics. Simulation of sonar operation allows evaluating algorithms and control systems without going to the real underwater environment; that reduces the costs and risks of in-field experiments. This paper tackles with the problem of real-time underwater imaging sonar simulation by using the OpenGL shading language chain on GPU. Our proposed system is able to simulate two main types of acoustic devices: mechanical scanning imaging sonars and forward-looking sonars. The underwater scenario simulation is performed based on three frameworks: (i) OpenSceneGraph reproduces the ocean visual effects, (ii) Gazebo deals with physical forces, and (iii) the Robot Construction Kit controls the sonar in underwater environments. Our system exploits the rasterization pipeline in order to simulate the sonar devices, which are simulated by means of three parameters: the pulse distance, the echo intensity and the sonar field-of-view, being all calculated over observable objects shapes in the 3D rendered scene. Sonar-intrinsic operational parameters, speckle noise and object material properties are also considered as part of the acoustic image. Our evaluation demonstrated that the proposed system is able to operate close to or faster than the real-world devices. Also, our method generates visually realistic sonar images when compared with real-world sonar images of the same scenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.