Abstract

BackgroundWild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. In soybean genome, there exist about 140 HD-Zip (Homeodomain-leucine Zipper) genes. HD-Zip transcription factor family is one of the largest plant specific superfamilies and plays important roles in response to abiotic stresses. Although HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown.ResultsFrom our previous transcriptome profile analysis of wild soybean treated by 50 mM NaHCO3, we identified an HD-Zip gene (Gshdz4) which showed high response to the alkaline stress. Our result of qRT-PCR showed that the expression of Gshdz4 was induced by alkaline stress (NaHCO3) in both leaves and roots of wild soybean. Overexpression of Gshdz4 in Arabidopsis resulted in enhanced tolerance to NaHCO3 and KHCO3 during the process of plant growth and development. However, the growths of transgenic and WT plants were not significantly different on the medium with high pH adjusted by KOH, implicating Gshdz4 is only responsible for resisting HCO3− but not high pH. The transgenic plants had less MDA contents but higher POD activities and chlorophyll contents than the WT plants. Moreover, the transcript levels of stress-related genes, such as NADP-ME, H+-Ppase, RD29B and KIN1 were increased with greater extent in the transgenic plants than the wild plants. On the contrary, Gshdz4 overexpression lines were much sensitive to osmotic stress at seed germination and stocking stages compared to the wild plants.ConclusionsWe revealed that the important and special roles of Gshdz4 in enhancing bicarbonate tolerance and responding to osmotic stress. It is the first time to elucidate these novel functions of HD-ZIP transcription factors. All the evidences broaden our understanding of functions of HD-Zip family and provide clues for uncovering the mechanisms of high tolerance of wild soybean to saline-alkaline stresses.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0872-7) contains supplementary material, which is available to authorized users.

Highlights

  • Wild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils

  • Identification and bioinformatics analysis of Glycine soja homeodomain-leucine zipper 4 (Gshdz4) In our preceding work [2], we noticed that one wild soybean gene which is highly homologous with Gmhdz4 gene of cultivated soybean was induced by alkaline stress

  • Since Gshdz4 was more significantly up-regulated than the other HD-Zip I members in transcriptome profiling analysis of Glycine soja roots treated by alkali stress [2], it was chosen as a further research object in term of functional analyses in this study

Read more

Summary

Introduction

Wild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown. Adverse environmental factors, such as salt, alkali, and/ or drought stresses greatly limit the growth and development of plants which are sessile on the ground. A deep comprehending of the essential mechanisms of plant responses to alkali stress is urgently needed and will contribute greatly to cultivating alkaline-tolerant crop varieties by biotechnology

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call