Abstract
Solar power generation has become a solution to mitigate the severe effects on the everyday higher prices of fossil fuels. Additionally, renewable energies operation -as solar- results in a non-polluting way to supply energy, being of special interest into highly contaminated cities and/or countries. The solar energy efficiency injection system is known to be high and mainly due to the power converters effectiveness, which is over of 95% for low and medium voltage. However, this efficiency is reduced when the solar array is partially shaded because traditional maximum power point tracking (MPPT) algorithms are not able to find the maximum power point (MPP) under irregular radiation. This work presents a new algorithm to find the global MPP (GMPP) based upon two MPPTs algorithms used regularly in uniform solar condition (USC), these are the Measuring Cell (MC) and the Perturb and Observe (P&O) methods. The MC ensures to find the surroundings of every local MPP (LMPP) faster and then choose among them the surroundings of the GMPP. Once the surroundings of GMPP are found, the P&O is used to get closer to the GMPP but reducing the DC voltage oscillation to zero hence overcoming the main issue of the P&O. Thus, the proposed algorithm finds the GMPP in two main steps and eliminates the oscillations around the GMPP in steady state, despite the utilization of the P&O. The algorithm is detailed mathematically, illustrated by means of a block diagram, and validated in simulated and experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.