Abstract
This paper addresses the set-point control of robot manipulators with friction where avoiding saturation of the actuators is a major issue. The original contribution is a novel direct fuzzy control system dealing with both practical constraints in mechanical manipulators: saturation and friction. The control system is made by taking advantage of input-output properties of the so-called sectorial fuzzy controllers. When friction is considered, we prove, via Lyapunov theory, that the steady state position errors owing to static friction are inside of a global attractor, which can be arbitrarily reduced. In case of absence of friction, the closed-loop system becomes globally asymptotic stable. In both cases, the important theoretical and practical feature of maintaining the control actions always within prescribed limits according to the actuator torque capabilities is guaranteed. Experimental evaluation of the proposed direct fuzzy control system on a nonlinear direct-drive robot arm is presented to validate its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.