Abstract
This article proposes an optimal energy scheduling method for power transmission networks using novel genetic algorithm (nGA) for solving the dynamic economic dispatch (DED) problem combined with machine learning based short-term load forecasting (STLF). The STLF is implemented based on a multilayer artificial neural network (MANN) to estimate the day-ahead variations in the demand. The efficacy of the proposed energy scheduling model together with the STLF is verified using a modified IEEE 30-bus system using real data of the power plants located in the Ereymentau region of Kazakhstan. The simulation results suggest that the proposed model offers a cost effective, reliable, and efficient dynamic energy scheduling in power transmission systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.