Abstract

In this paper we introduce a novel approach for classifier and feature selection in a multi-classifier system using Genetic Algorithm (GA). Specifically, we propose a 2-part structure for each chromosome in which the first part is encoding for classifier and the second part is encoding for feature. Our structure is simple in the implementation of the crossover as well as the mutation stage of GA. We also study 8 different fitness functions for our GA based algorithm to explore the optimal fitness functions for our model. Experiments are conducted on both 14 UCI Machine Learning Repository and CLEF2009 medical image database to demonstrate the benefit of our model on reducing classification error rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.