Abstract

In this paper, a robust adaptive control scheme is proposed for the leader following control of a class of fractional-order multi-agent systems (FMAS). The asymptotic stability is shown by a linear matrix inequality (LMI) approach. The nonlinear dynamics of the agents are assumed to be unknown. Moreover, the communication topology among the agents is assumed to be unknown and time-varying. A deep general type-2 fuzzy system (DGT2FS) using restricted Boltzmann machine (RMB) and contrastive divergence (CD) learning algorithm is proposed to estimate uncertainties. The simulation studies presented indicate that the proposed control method results in good performance under time-varying topology, unknown dynamics and external disturbances. The effectiveness of the proposed DGT2FS is verified also on modeling problems with high dimensional real-world data sets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call