Abstract

Gene amplification is involved in various biological phenomena such as cancer development and drug resistance. However, the mechanism is largely unknown because of the complexity of the amplification process. We describe a gene amplification system in Saccharomyces cerevisiae that is based on double rolling-circle replication utilizing break-induced replication. This system produced three types of amplification products. Type-1 products contain 5-7 inverted copies of the amplification marker, leu2d. Type-2 products contain 13 to approximately 100 copies of leu2d (up to approximately 730 kb increase) with a novel arrangement present as randomly oriented sequences flanked by inverted leu2d copies. Type-3 products are acentric multicopy minichromosomes carrying leu2d. Structures of type-2 and -3 products resemble those of homogeneously staining region and double minutes of higher eukaryotes, respectively. Interestingly, products analogous to these were generated at low frequency without deliberate DNA cleavage. These features strongly suggest that the processes described here may contribute to natural gene amplification in higher eukaryotes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.