Abstract

Gears, as indispensable components of machinery, demand accurate prediction of their Remaining Useful Life (RUL). To enhance the utilization of ordered information within time series data and elevate RUL prediction precision, this study introduces the attention-guided multi-hierarchy LSTM (AGMLSTM). This innovative approach leverages attention mechanisms to capture the intricate interplay between high and low hierarchical features of the input data, marking the first application of such a technique in gear RUL prediction. Additionally, a refined health indicator (HI) is introduced, constructed through a diffusion model, to precisely reflect the gears' health condition. The proposed RUL prediction method unfolds as follows: firstly, HIs are computed from gear vibration data. Subsequently, leveraging the known HIs, AGMLSTM predicts future HIs, and the RUL of the gear is determined upon surpassing the failure threshold. Quantitative analysis of experimental results conclusively demonstrates the superiority of the proposed RUL prediction method over existing approaches for gear RUL estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.