Abstract
The demand for agricultural products increased exponentially as the global population grew. The rapid development of computer vision-based artificial intelligence and deep learning-related technologies has impacted a wide range of industries, including disease detection and classification. This paper introduces a novel neural network-based hybrid model (GCL). GCL is a dataset-augmentation fusion of long-short term memory (LSTM) and convolutional neural network (CNN) with generative adversarial network (GAN). GAN is used for the augmentation of the dataset, CNN extracts the features and LSTM classifies the various paddy diseases. The GCL model is being investigated to improve the classification model’s accuracy and reliability. The dataset was compiled using secondary resources such as Mendeley, Kaggle, UCI, and GitHub, having images of bacterial blight, leaf smut, and rice blast. The experimental setup for proving the efficacy of the GCL model demonstrates that the GCL is suitable for disease classification and works with 97% testing accuracy. GCL can further be used for the classification of more diseases of paddy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.