Abstract

In hospitals and pathology, observing the features and locations of brain tumors in Magnetic Resonance Images (MRI) is a crucial task for assisting medical professionals in both treatment and diagnosis. The multi-class information about the brain tumor is often obtained from the patient's MRI dataset. However, this information may vary in different shapes and sizes for various brain tumors, making it difficult to detect their locations in the brain. To resolve these issues, a novel customized Deep Convolution Neural Network (DCNN) based Residual-Unet (ResUnet) model with Transfer Learning (TL) is proposed for predicting the locations of the brain tumor in an MRI dataset. The DCNN model has been used to extract the features from input images and select the Region Of Interest (ROI) by using the TL technique for training it faster. Furthermore, the min-max normalizing approach is used to enhance the color intensity value for particular ROI boundary edges in the brain tumor images. Specifically, the boundary edges of the brain tumors have been detected by utilizing Gateaux Derivatives (GD) method to identify the multi-class brain tumors precisely. The proposed scheme has been validated on two datasets namely the brain tumor, and Figshare MRI datasets for detecting multi-class Brain Tumor Segmentation (BTS).The experimental results have been analyzed by evaluation metrics namely, accuracy (99.78, and 99.03), Jaccard Coefficient (93.04, and 94.95), Dice Factor Coefficient (DFC) (92.37, and 91.94), Mean Absolute Error (MAE) (0.0019, and 0.0013), and Mean Squared Error (MSE) (0.0085, and 0.0012) for proper validation. The proposed system outperforms the state-of-the-art segmentation models on the MRI brain tumor dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call