Abstract
Molecular beam techniques are commonly used to obtain detailed information about reaction dynamics and kinetics of gas-surface interactions. These experiments are traditionally performed in vacuum and the dynamic state of surfaces under ambient conditions is thereby excluded from detailed studies. Herein we describe the development and demonstration of a new vacuum-gas interface that increases the accessible pressure range in environmental molecular beam (EMB) experiments. The interface consists of a grating close to a macroscopically flat surface, which allows for experiments at pressures above 1 Pa including angularly resolved measurements of the emitted flux. The technique is successfully demonstrated using key molecular beam experiments including elastic helium and inelastic water scattering from graphite, helium and light scattering from condensed adlayers, and water interactions with a liquid 1-butanol surface. The method is concluded to extend the pressure range and flexibility in EMB studies with implications for investigations of high pressure interface phenomena in diverse fields including catalysis, nanotechnology, environmental science, and life science. Potential further improvements of the technique are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.