Abstract

A gas generator — consisting of a single-stage shrouded mixed-flow compressor without a diffusor, a rotating combustion chamber, and a vaneless single-stage shrouded centripetal turbine — is presented and analyzed here. All components comprise a coherent rotating device, which avoids most of the problems usually associated with small gas generators. In other words, the concept avoids all radial clearances, it is vaneless, shortens the combustion chamber, minimizes the wetted area and enables ceramic materials to be used, due to compressive blade stresses. However, the concept faces severe structural, thermal and chemical reaction challenges. All these features and their implications are discussed and their benefits for several jet engines are quantified, mainly by means of thermodynamic cycle calculations. An upfront CFD analysis identifies a polytropic compressor efficiency of around 95%. It is then demonstrated that the concept offers a thrust-to-weight ratio which is several times higher than the standard when incorporated into small UAV-type jet engines. It also enables an attractive multistage and dual-flow, but fully vaneless design option. Lastly, a thermal efficiency increase of several percentage points would be achieved, if the concept were to be realized in the (small) core of turbofans with highest overall pressure ratios and high bypass ratios. In summary, the paper presents a gas generator approach which may be considered by designers of small jet engines like those used in UAV applications and it might even be a (challenging) long-term option for the small core engines encountered in future turbofans and turboprops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.