Abstract

Background and objectiveThis study aims to enhance the resolution in the axial direction of rectal cancer magnetic resonance (MR) imaging scans to improve the accuracy of visual interpretation and quantitative analysis. MR imaging is a critical technique for the diagnosis and treatment planning of rectal cancer. However, obtaining high-resolution MR images is both time-consuming and costly. As a result, many hospitals store only a limited number of slices, often leading to low-resolution MR images, particularly in the axial plane. Given the importance of image resolution in accurate assessment, these low-resolution images frequently lack the necessary detail, posing substantial challenges for both human experts and computer-aided diagnostic systems. Image super-resolution (SR), a technique developed to enhance image resolution, was originally applied to natural images. Its success has since led to its application in various other tasks, especially in the reconstruction of low-resolution MR images. However, most existing SR methods fail to account for all anatomical planes during reconstruction, leading to unsatisfactory results when applied to rectal cancer MR images. MethodsIn this paper, we propose a GAN-based three-axis mutually supervised super-resolution reconstruction method tailored for low-resolution rectal cancer MR images. Our approach involves performing one-dimensional (1D) intra-slice SR reconstruction along the axial direction for both the sagittal and coronal planes, coupled with inter-slice SR reconstruction based on slice synthesis in the axial direction. To further enhance the accuracy of super-resolution reconstruction, we introduce a consistency supervision mechanism across the reconstruction results of different axes, promoting mutual learning between each axis. A key innovation of our method is the introduction of Depth-GAN for synthesize intermediate slices in the axial plane, incorporating depth information and leveraging Generative Adversarial Networks (GANs) for this purpose. Additionally, we enhance the accuracy of intermediate slice synthesis by employing a combination of supervised and unsupervised interactive learning techniques throughout the process. ResultsWe conducted extensive ablation studies and comparative analyses with existing methods to validate the effectiveness of our approach. On the test set from Shanxi Cancer Hospital, our method achieved a Peak Signal-to-Noise Ratio (PSNR) of 34.62 and a Structural Similarity Index (SSIM) of 96.34 %. These promising results demonstrate the superiority of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.