Abstract

Computer vision functions like object detection, image segmentation, and image classification were recently getting advance due to Convolutional Neural Networks (CNNs). In the food and agricultural industries, image classification plays a critical role in quality control. CNNs are made up of layers that alternate between convolutional, nonlinearity, and feature pooling. In this article, we proposed Fuzzy Pooling, a novel pooling approach that works based on fuzzy logic, that can increase the accuracy of the CNNs by replacing the conventional pooling layer. This proposed Fuzzy Pooling was put to the test with CIFAR-10 and SVHN data sets on single layer CNN, and it outperformed previous pooling strategies by achieving 92% and 97% classification accuracy. This proposed Fuzzy Pooling layer was replaced the Max Pooling layer in the ThinNet architecture, and it was trained using the back propagation method. It was demonstrated experimentally on the Lemon fruit data set to classify the fruits into three categories such as Good, Medium, and Poor. In order to classify the lemon fruit into three categories, the 1000 Fully Connected layer in ThinNet architecture was replaced with three Fully Connected layers. The Modified ThinNet architecture called ThinNet_FP was trained with a learning rate of 0.001 and achieved 97% accuracy in classifying the images and outperformed previous CNN architectures when trained on the same data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.