Abstract
Multi-channel and single-channel image denoising are on two important development fronts. Integrating multi-channel and single-channel image denoisers for further improvement is a valuable research direction. A natural assumption is that using more useful information is helpful to the output results. In this paper, a novel multi-channel and single-channel fusion paradigm (MSF) is proposed. The proposed MSF works by fusing the estimates of a multi-channel image denoiser and a single-channel image denoiser. The performance of recent multi-channel image denoising methods involved in the proposed MSF can be further improved at low additional time-consuming cost. Specifically, the validity principle of the proposed MSF is that the fused single-channel image denoiser can produce auxiliary estimate for the involved multi-channel image denoiser in a designed underdetermined transform domain. Based on the underdetermined transformation, we create a corresponding orthogonal transformation for fusion and better restore the multi-channel images. The quantitative and visual comparison results demonstrate that the proposed MSF can be effectively applied to several state-of-the-art multi-channel image denoising methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.