Abstract
Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDES performs better than an individual KDES. Conventionally, KDES fusion is performed by concatenating them after the gradient, colour and shape descriptors have been extracted. This approach has limitations in regard to the efficiency as well as the effectiveness. In this paper, we propose a novel approach to fuse different image features before the descriptor extraction, resulting in a compact descriptor which is efficient and effective. In addition, we have investigated the effect on the proposed descriptor when texture-based features are fused along with the conventionally used features. Our proposed descriptor is examined on two publicly available image databases and shown to provide outstanding performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.