Abstract

The Nbs1 protein, hypomorphic mutant in Nijmegen breakage syndrome (NBS), is a component of the Mre11/Rad50/Nbs1 (M/R/N) complex that acts as a DNA double-strand break sensor and functions in cell cycle checkpoint in response to DNA damage and DNA repair. Here we report that targeted disruption of murine NBS1 gene ( Nbn) in the lens alters the M/R/N complex nuclear localization and results in microphthalmia in mice due to reduced proliferation of the lens epithelial cells. Unexpectedly, all Nbn-deficient lenses develop cataracts at an early age due to altered lens fibre cell differentiation, including disruption of normal lens epithelial and fibre cell architecture and incomplete denucleation of fibre cells, and these changes are independent of the p53 pathway. In addition, Nbn-deficient lenses show dysregulated transcription of various crystallins. Thus, this study implicates a novel function of Nbs1 in terminal differentiation of the lens fibre cells and in cataractogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.