Abstract

The receptor for macrophage colony-stimulating factor 1 receptor (CSF1R) is a product of the proto-oncogene c-fms and a member of the class III transmembrane tyrosine kinase receptor family. Earlier, we described increased mRNA expression of CSF1R in human telomerase reverse transcriptase (hTERT) immortalized human ovarian surface epithelial (IOSE) cell lines derived from a single donor. Here, we further describe that CSF1R is upregulated at both the mRNA and protein level in hTERT immortalized human normal OSE cells from two different donors and in hTERT immortalized human pancreatic ductal epithelial cells. CSF1R was not upregulated in hTERT immortalized epithelial clones that subsequently underwent senescence or in immortalized fibroblasts. Upon stimulation by the CSF1R ligand CSF1, the immortalized epithelial cell lines showed rapid internalization of CSF1R with concomitant down-modulation and colocalization of phosphorylated NFkappaBp65 with hTERT protein, hTERT translocation into the nucleus and the binding of c-Myc to the hTERT promoter region. Reducing the expression of CSF1R using short hairpin interfering RNA abolished these effects and also decreased cell survival and the number of population doublings under suboptimal culture conditions. The telomerase inhibitor GRN163L confirmed a role for telomerase in the cleavage of the intracellular domain of CSF1R. On the basis of these findings, we suggest that CSF1R may be a critical factor facilitating hTERT immortalization of epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.