Abstract
Frequency selective radome is one of the most important applications of frequency selective surface (FSS). In order to obtain better stealth performance, a novel element FSS, based on a regular slot element FSS, is presented in this paper. The novel element consists of a slot element in the center and at least two slot strips placed on the periodic boundary. We call such FSS the “hybrid-element type FSS” because it exhibits characteristics of both slot type and patch type FSS. Simulation and optimization work is carried out by using a period moment method and a discrete particle swarm optimization method based on the application requirements of a missile radome. Simulation results show that the hybrid-element type FSS has much steeper transition section between pass-band and stop-band, and much lower transmittance in stop-band when compared with the corresponding slot type FSS. The new FSS also has much lower insertion loss in pass-band, much thinner thickness, much simple structure and fabrication process when compared with the ordinary two-layer FSS. Equivalent sample plate is fabricated using printed circuit method and tested using the free space method. Good fit between simulation and testing results verify the accuracy and feasibility of this novel FSS design. The hybrid-element type FSS is especially suitable for the stealth radome when woking frequencies of both sides are very close. It provides a simple and feasible approach for developing frequency selective radome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.