Abstract

A deterministic method (frequency distribution method) for selecting compounds from a partitioned virtual combinatorial library for efficient synthesis is presented here. The method is based on reagent frequency analysis and can be applied to any library of molecules distributed in any given partitioned chemical space (cluster, cell-based, etc.). Compound selection by reagent frequency distribution can produce a unique, diverse set of molecules that adequately represents the library while requiring the least amount of compounds to be synthesized and minimizing the number of different reagents that must be used. This method also provides a practical solution to the configuration of plate layout. Because the method essentially identifies "expensive" regions in the chemical space to synthesize for a desired diversity or similarity coverage, decisions concerning the necessity to synthesize these compounds can be addressed. Minimum compound generation and efficient plate layout results in savings both in time of synthesis and cost of materials. This method always results in a discrete solution, which can be used for any given library size as well as any combination of reagents and is also readily adaptable to robotic automation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.