Abstract

In this paper, a constrained optimization problem is formulated to tune the limit cycle minimizing controllers meeting additional loop-shaping performances such as phase margin and gain crossover frequency. A graphical approach is proposed so as to determine the superior controller in terms of better limit-cycle suppression. The framework is illustrated with a suitable case of elementary servo plant which has separable static backlash nonlinearity in its model. For this plant, integer-order controllers and their fractional counterparts (PI and $$ PI ^\alpha , [ PI ]^\alpha $$ ; PID and $$ PI ^\alpha D^\beta $$ ) are designed and compared. Interestingly, it is found that the fractional controllers produce better limit-cycle responses than their integer counterparts while both meeting the rest of the specifications. Correspondingly, the better sustained oscillations in the plant output response are obtained with fractional controllers. Such a ‘fractional superiority’ is further verified with the closed-loop nonlinear simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call